The notion of cusp forms for a class of reductive symmetric spaces of split rank 1

Erik P. van den Ban, Job J. Kuit, Henrik Schlichtkrull

8 Downloads (Pure)

Abstract

We study a notion of cusp forms for the symmetric spaces G/H with G = SL(n, R) and H = S(GL(n − 1, R) × GL(1, R)). We classify all minimal parabolic subgroups of G for which the associated cuspidal integrals are convergent and discuss the possible definitions of cusp forms. Finally, we show that the closure of the direct sum of the discrete series representations of G/H coincides with the space of cusp forms.

OriginalsprogEngelsk
TidsskriftKyoto Journal of Mathematics
Vol/bind59
Udgave nummer2
Sider (fra-til)471-513
Antal sider43
ISSN2156-2261
DOI
StatusUdgivet - 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'The notion of cusp forms for a class of reductive symmetric spaces of split rank 1'. Sammen danner de et unikt fingeraftryk.

Citationsformater