The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone

Kenn Holmbeck, Paolo Bianco, Isabelle Pidoux, S Inoue, R C Billinghurst, W Wu, Kali Chrysovergis, Susan Yamada, Henning Birkedal-Hansen, A Robin Poole

    155 Citationer (Scopus)

    Abstract

    The osteocyte is the terminally differentiated state of the osteogenic mesenchymal progenitor immobilized in the bone matrix. Despite their numerical prominence, little is known about osteocytes and their formation. Osteocytes are physically separated in the bone matrix but seemingly compensate for their seclusion from other cells by maintaining an elaborate network of cell processes through which they interact with other osteocytes and bone-lining cells at the periosteal and endosteal surfaces of the bone. This highly organized architecture suggests that osteocytes make an active contribution to the structure and maintenance of their environment rather than passively submitting to random embedding during bone growth or repair. The most abundant matrix protein in the osteocyte environment is type-I collagen and we demonstrate here that, in the mouse, osteocyte phenotype and the formation of osteocyte processes is highly dependent on continuous cleavage of type-I collagen. This collagenolytic activity and formation of osteocyte processes is dependent on matrix metalloproteinase activity. Specifically, a deficiency of membrane type-1 matrix metalloproteinase leads to disruption of collagen cleavage in osteocytes and ultimately to the loss of formation of osteocyte processes. Osteocytogenesis is thus an active invasive process requiring cleavage of collagen for maintenance of the osteocyte phenotype.

    OriginalsprogEngelsk
    TidsskriftJournal of Cell Science
    Vol/bind118
    Udgave nummerPt 1
    Sider (fra-til)147-56
    Antal sider10
    ISSN0021-9533
    DOI
    StatusUdgivet - 1 jan. 2005

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone'. Sammen danner de et unikt fingeraftryk.

    Citationsformater