The influence of experimentally induced pain on shoulder muscle activity

L.P. Diederichsen, A. Winther, P. Dyhre-Poulsen, M.R. Krogsgaard, Jens Christian Nørregaard

32 Citationer (Scopus)

Abstract

Muscle function is altered in painful shoulder conditions. However, the influence of shoulder pain on muscle coordination of the shoulder has not been fully clarified. The aim of the present study was to examine the effect of experimentally induced shoulder pain on shoulder muscle function. Eleven healthy men (range 22-27 years), with no history of shoulder or cervical problems, were included in the study. Pain was induced by 5% hypertonic saline injections into the supraspinatus muscle or subacromially. Seated in a shoulder machine, subjects performed standardized concentric abduction (0A degrees-105A degrees) at a speed of approximately 120A degrees/s, controlled by a metronome. During abduction, electromyographic (EMG) activity was recorded by intramuscular wire electrodes inserted in two deeply located shoulder muscles and by surface-electrodes over six superficially located shoulder muscles. EMG was recorded before pain, during pain and after pain had subsided and pain intensity was continuously scored on a visual analog scale (VAS). During abduction, experimentally induced pain in the supraspinatus muscle caused a significant decrease in activity of the anterior deltoid, upper trapezius and the infraspinatus and an increase in activity of lower trapezius and latissimus dorsi muscles. Following subacromial injection a significantly increased muscle activity was seen in the lower trapezius, the serratus anterior and the latissimus dorsi muscles. In conclusion, this study shows that acute pain both subacromially and in the supraspinatus muscle modulates coordination of the shoulder muscles during voluntary movements. During painful conditions, an increased activity was detected in the antagonist (latissimus), which support the idea that localized pain affects muscle activation in a way that protects the painful structure. Further, the changes in muscle activity following subacromial pain induction tend to expand the subacromial space and thereby decrease the load on the painful structures
Udgivelsesdato: 2009/4
OriginalsprogEngelsk
TidsskriftExperimental Brain Research
Vol/bind194
Udgave nummer3
Sider (fra-til)329-337
Antal sider8
ISSN0014-4819
StatusUdgivet - 2009

Citationsformater