TY - JOUR
T1 - The in situ light microenvironment of corals
AU - Wangpraseurt, Daniel
AU - Polerecky, Lubos
AU - Larkum, Anthony W.D.
AU - Ralph, Peter J.
AU - Nielsen, Daniel A.
AU - Pernice, Mathieu
AU - Kühl, Michael
PY - 2014
Y1 - 2014
N2 - We used a novel diver-operated microsensor system to collect in situ spectrally resolved light fields on corals with a micrometer spatial resolution. The light microenvironment differed between polyp and coenosarc tissues with scalar irradiance (400-700 nm) over polyp tissue, attenuating between 5.1- and 7.8-fold from top to base of small hemispherical coral colonies, whereas attenuation was at most 1.5-fold for coenosarc tissue. Fluctuations in ambient solar irradiance induced changes in light and oxygen microenvironments, which were more pronounced and faster in coenosarc compared with polyp tissue. Backscattered light from the surrounding benthos contributed > 20% of total scalar irradiance at the coral tissue surface and enhanced symbiont photosynthesis and the local O2 concentration, indicating an important role of benthos optics for coral ecophysiology. Light fields on corals are species and tissue specific and exhibit pronounced variation on scales from micrometers to decimeters. Consequently, the distribution, genetic diversity, and physiology of coral symbionts must be coupled with the measurements of their actual light microenvironment to achieve a more comprehensive understanding of coral ecophysiology.
AB - We used a novel diver-operated microsensor system to collect in situ spectrally resolved light fields on corals with a micrometer spatial resolution. The light microenvironment differed between polyp and coenosarc tissues with scalar irradiance (400-700 nm) over polyp tissue, attenuating between 5.1- and 7.8-fold from top to base of small hemispherical coral colonies, whereas attenuation was at most 1.5-fold for coenosarc tissue. Fluctuations in ambient solar irradiance induced changes in light and oxygen microenvironments, which were more pronounced and faster in coenosarc compared with polyp tissue. Backscattered light from the surrounding benthos contributed > 20% of total scalar irradiance at the coral tissue surface and enhanced symbiont photosynthesis and the local O2 concentration, indicating an important role of benthos optics for coral ecophysiology. Light fields on corals are species and tissue specific and exhibit pronounced variation on scales from micrometers to decimeters. Consequently, the distribution, genetic diversity, and physiology of coral symbionts must be coupled with the measurements of their actual light microenvironment to achieve a more comprehensive understanding of coral ecophysiology.
U2 - 10.4319/lo.2014.59.3.0917
DO - 10.4319/lo.2014.59.3.0917
M3 - Journal article
SN - 0024-3590
VL - 59
SP - 917
EP - 926
JO - Limnology and Oceanography
JF - Limnology and Oceanography
IS - 3
ER -