TY - JOUR
T1 - The importance of macro- versus microstructure in modulating light levels inside coral colonies
AU - Kaniewska, Paulina
AU - Magnusson, Sveinn H.
AU - Anthony, Ken R. N.
AU - Reef, Ruth
AU - Kühl, Michael
AU - Hoegh-Guldberg, Ove
PY - 2011/8
Y1 - 2011/8
N2 - Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef-building corals (order Scleractinia) across high spatio-temporal variation in the light environment of coral reefs. We tested the hypothesis that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within-tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms: branching Stylophora pistillata and massive Lobophyllia corymbosa. Scalar irradiance at the level of the symbionts (2mm into the coral tissues) were <10% of ambient irradiance and nearly identical for the two species, despite substantially different light environments at the tissue surface. In S. pistillata, light attenuation (90% relative to ambient) was observed predominantly at the colony level as a result of branch-to-branch self-shading, while in L. corymbosa, near-complete light attenuation (97% relative to ambient) was occurring due to tissue optical properties. The latter could be explained partly by differences in photosynthetic pigment content in the symbiont cells and pigmentation in the coral host tissue. Our results demonstrate that different strategies of light modulation at colony, polyp, and cellular levels by contrasting morphologies are equally effective in achieving favorable irradiances at the level of coral photosymbionts.
AB - Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef-building corals (order Scleractinia) across high spatio-temporal variation in the light environment of coral reefs. We tested the hypothesis that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within-tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms: branching Stylophora pistillata and massive Lobophyllia corymbosa. Scalar irradiance at the level of the symbionts (2mm into the coral tissues) were <10% of ambient irradiance and nearly identical for the two species, despite substantially different light environments at the tissue surface. In S. pistillata, light attenuation (90% relative to ambient) was observed predominantly at the colony level as a result of branch-to-branch self-shading, while in L. corymbosa, near-complete light attenuation (97% relative to ambient) was occurring due to tissue optical properties. The latter could be explained partly by differences in photosynthetic pigment content in the symbiont cells and pigmentation in the coral host tissue. Our results demonstrate that different strategies of light modulation at colony, polyp, and cellular levels by contrasting morphologies are equally effective in achieving favorable irradiances at the level of coral photosymbionts.
U2 - 10.1111/j.1529-8817.2011.01021.x
DO - 10.1111/j.1529-8817.2011.01021.x
M3 - Journal article
C2 - 27020021
SN - 0022-3646
VL - 47
SP - 846
EP - 860
JO - Journal of Phycology
JF - Journal of Phycology
IS - 4
ER -