TY - JOUR
T1 - The apolipoprotein m-sphingosine-1-phosphate axis
T2 - biological relevance in lipoprotein metabolism, lipid disorders and atherosclerosis
AU - Arkensteijn, Bas W C
AU - Berbée, Jimmy F P
AU - Rensen, Patrick C N
AU - Nielsen, Lars B
AU - Christoffersen, Christina
PY - 2013/3
Y1 - 2013/3
N2 - Apolipoprotein M (apoM) is a plasma apolipoprotein that mainly associates with high-density lipoproteins. Hence, most studies on apoM so far have investigated its effect on and association with lipid metabolism and atherosclerosis. The insight into apoM biology recently took a major turn. ApoM was identified as a carrier of the bioactive lipid sphingosine-1-phosphate (S1P). S1P activates five different G-protein-coupled receptors, known as the S1P-receptors 1-5 and, hence, affects a wide range of biological processes, such as lymphocyte trafficking, angiogenesis, wound repair and even virus suppression and cancer. The ability of apoM to bind S1P is due to a lipophilic binding pocket within the lipocalin structure of the apoM molecule. Mice overexpressing apoM have increased plasma S1P concentrations, whereas apoM-deficient mice have decreased S1P levels. ApoM-S1P is able to activate the S1P-receptor-1, affecting the function of endothelial cells, and apoM-deficient mice display impaired endothelial permeability in the lung. This review will focus on the putative biological roles of the new apoM-S1P axis in relation to lipoprotein metabolism, lipid disorders and atherosclerosis.
AB - Apolipoprotein M (apoM) is a plasma apolipoprotein that mainly associates with high-density lipoproteins. Hence, most studies on apoM so far have investigated its effect on and association with lipid metabolism and atherosclerosis. The insight into apoM biology recently took a major turn. ApoM was identified as a carrier of the bioactive lipid sphingosine-1-phosphate (S1P). S1P activates five different G-protein-coupled receptors, known as the S1P-receptors 1-5 and, hence, affects a wide range of biological processes, such as lymphocyte trafficking, angiogenesis, wound repair and even virus suppression and cancer. The ability of apoM to bind S1P is due to a lipophilic binding pocket within the lipocalin structure of the apoM molecule. Mice overexpressing apoM have increased plasma S1P concentrations, whereas apoM-deficient mice have decreased S1P levels. ApoM-S1P is able to activate the S1P-receptor-1, affecting the function of endothelial cells, and apoM-deficient mice display impaired endothelial permeability in the lung. This review will focus on the putative biological roles of the new apoM-S1P axis in relation to lipoprotein metabolism, lipid disorders and atherosclerosis.
U2 - 10.3390/ijms14034419
DO - 10.3390/ijms14034419
M3 - Journal article
C2 - 23439550
SN - 1661-6596
VL - 14
SP - 4419
EP - 4431
JO - International Journal of Molecular Sciences (Online)
JF - International Journal of Molecular Sciences (Online)
IS - 3
ER -