TY - JOUR
T1 - The anticonvulsant action of the galanin receptor agonist NAX-5055 involves modulation of both excitatory- and inhibitory neurotransmission
AU - Walls, Anne B
AU - Flynn, Sean P
AU - West, Peter J
AU - Müller, Margit S
AU - Bak, Lasse K
AU - Bulaj, Grzegorz
AU - Schousboe, Arne
AU - White, H Steve
N1 - Copyright © 2016 Elsevier B.V. All rights reserved.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - The endogenous neuropeptide galanin is ubiquitously expressed throughout the mammalian brain. Through the galanin receptors GalR1-3, galanin has been demonstrated to modulate both glutamatergic and GABAergic neurotransmission, and this appears to be important in epilepsy and seizure activity. Accordingly, galanin analogues are likely to provide a new approach to seizure management. However, since peptides are generally poor candidates for therapeutic agents due to their poor metabolic stability and low brain bioavailability, a search for alternative strategies for the development of galanin-based anti-convulsant drugs was prompted. Based on this, a rationally designed GalR1 preferring galanin analogue, NAX-5055, was synthesized. This compound demonstrates anti-convulsant actions in several animal models of epilepsy. However, the alterations at the cellular level leading to this anti-convulsant action of NAX-5055 are not known. Here we investigate the action of NAX-5055 at the cellular level by determining its effects on excitatory and inhibitory neurotransmission, i.e. vesicular release of glutamate and GABA, respectively, in cerebellar, neocortical and hippocampal preparations. In addition, its effects on cell viability and neurotransmitter transporter capacity were examined to evaluate potential cell toxicity mediated by NAX-5055. It was found that vesicular release of glutamate was reduced concentration-dependently by NAX-5055 in the range from 0.1 to 1000nM. Moreover, exposure to 1μM NAX-5055 led to a reduction in the extracellular level of glutamate and an elevation of the extracellular level of GABA. Altogether these findings may at least partly explain the anti-convulsant effect of NAX-5055 observed in vivo.
AB - The endogenous neuropeptide galanin is ubiquitously expressed throughout the mammalian brain. Through the galanin receptors GalR1-3, galanin has been demonstrated to modulate both glutamatergic and GABAergic neurotransmission, and this appears to be important in epilepsy and seizure activity. Accordingly, galanin analogues are likely to provide a new approach to seizure management. However, since peptides are generally poor candidates for therapeutic agents due to their poor metabolic stability and low brain bioavailability, a search for alternative strategies for the development of galanin-based anti-convulsant drugs was prompted. Based on this, a rationally designed GalR1 preferring galanin analogue, NAX-5055, was synthesized. This compound demonstrates anti-convulsant actions in several animal models of epilepsy. However, the alterations at the cellular level leading to this anti-convulsant action of NAX-5055 are not known. Here we investigate the action of NAX-5055 at the cellular level by determining its effects on excitatory and inhibitory neurotransmission, i.e. vesicular release of glutamate and GABA, respectively, in cerebellar, neocortical and hippocampal preparations. In addition, its effects on cell viability and neurotransmitter transporter capacity were examined to evaluate potential cell toxicity mediated by NAX-5055. It was found that vesicular release of glutamate was reduced concentration-dependently by NAX-5055 in the range from 0.1 to 1000nM. Moreover, exposure to 1μM NAX-5055 led to a reduction in the extracellular level of glutamate and an elevation of the extracellular level of GABA. Altogether these findings may at least partly explain the anti-convulsant effect of NAX-5055 observed in vivo.
U2 - 10.1016/j.eplepsyres.2016.01.006
DO - 10.1016/j.eplepsyres.2016.01.006
M3 - Journal article
C2 - 26894875
SN - 0920-1211
VL - 121
SP - 55
EP - 63
JO - Epilepsy Research
JF - Epilepsy Research
ER -