TY - JOUR
T1 - The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes
AU - Korsholm, Karen Smith
AU - Agger, Else Marie
AU - Foged, Camilla
AU - Christensen, Dennis
AU - Dietrich, Jes
AU - Andersen, Claire Swetman
AU - Geisler, Carsten
AU - Andersen, Peter
N1 - Keywords: Adjuvants, Immunologic; Adsorption; Animals; Antigen Presentation; Antigens; Cell Differentiation; Cells, Cultured; Dendritic Cells; Female; Liposomes; Mice; Mice, Inbred BALB C; Mice, Transgenic; Ovalbumin; Quaternary Ammonium Compounds
PY - 2007
Y1 - 2007
N2 - Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes did not have an effect on the maturation of murine bone-marrow-derived dendritic cells (BM-DCs) related to the surface expression of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86. We found that ovalbumin (OVA) readily associated with the liposomes (> 90%) when mixed in equal concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D. In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake by T cells in mixed splenocyte cultures. The adsorption of antigen onto the liposomes increased the efficiency of antigen presentation more than 100 times in a responder assay with MHC class II-restricted OVA-specific T-cell receptor transgenic DO11.10 T cells. Our data therefore suggest that the primary adjuvant mechanism of cationic DDA liposomes is to target the cell membrane of antigen-presenting cells, which subsequently leads to enhanced uptake and presentation of antigen.
AB - Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes did not have an effect on the maturation of murine bone-marrow-derived dendritic cells (BM-DCs) related to the surface expression of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86. We found that ovalbumin (OVA) readily associated with the liposomes (> 90%) when mixed in equal concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D. In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake by T cells in mixed splenocyte cultures. The adsorption of antigen onto the liposomes increased the efficiency of antigen presentation more than 100 times in a responder assay with MHC class II-restricted OVA-specific T-cell receptor transgenic DO11.10 T cells. Our data therefore suggest that the primary adjuvant mechanism of cationic DDA liposomes is to target the cell membrane of antigen-presenting cells, which subsequently leads to enhanced uptake and presentation of antigen.
U2 - 10.1111/j.1365-2567.2007.02560.x
DO - 10.1111/j.1365-2567.2007.02560.x
M3 - Journal article
C2 - 17302734
SN - 0953-4954
VL - 121
SP - 216
EP - 226
JO - Immunology. Supplement
JF - Immunology. Supplement
IS - 2
ER -