TY - UNPB
T1 - Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
AU - Cavaliere, Giuseppe
AU - Rahbek, Anders Christian
AU - Taylor, A. M. Robert
N1 - JEL classification: C30, C32
PY - 2008
Y1 - 2008
N2 - Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special cases. We show that the conventional rank statistics computed as in Johansen (1988,1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identi…ed inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, nor to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown to perform very well in practice.
AB - Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special cases. We show that the conventional rank statistics computed as in Johansen (1988,1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identi…ed inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, nor to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. The bootstrap is shown to perform very well in practice.
KW - Faculty of Social Sciences
KW - trace and maximum eigenvalue tests
KW - wild bootstrap
M3 - Working paper
BT - Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
PB - Department of Economics, University of Copenhagen
ER -