Abstract
INTRODUCTION: The aim of this clinical pilot study was to examine the accuracy of noninvasive fetal RHD genotyping in early pregnancy (8+0 to 11+6 weeks) and to clarify whether targeted administration of Rhesus immunoglobulin (RhIg) is possible for women undergoing an induced abortion such that unnecessary injections can be avoided. The study examines the correlation between gestational age and the amount of cell-free fetal DNA in maternal plasma, the fetal fraction of DNA and whether transportation time or body mass index affects these parameters.
MATERIAL AND METHODS: Fifty-two RhD-negative women undergoing a surgically induced abortion were included. A maternal blood sample was collected prior to the abortion and a tissue sample was collected from the placental part of the abortion material after the intervention. Fetal RhD type was determined by PCR analysis of cell-free fetal DNA extracted from maternal plasma and on DNA from the tissue sample, with the latter providing a reference standard. Copies of RHD/mL were determined on RHD-positive samples and the fetal fraction of DNA was calculated.
RESULTS: We demonstrated complete concordance between results from plasma and tissue, with 31 RhD-positive and 21 RhD-negative samples, corresponding to 40% being RhD-negative, specificity 100% [95% confidence interval (CI) 88.8-100] and sensitivity 100% (95% CI 83.9-100). We found no significant correlation between gestational age and the amount or the fraction of cell-free fetal DNA in maternal plasma, nor did we find that transportation time or BMI significantly affected these factors in this setup.
CONCLUSIONS: Fetal RHD genotyping can be accurately performed from the 8th week of gestation and unnecessary injections of RhIg can be avoided for women undergoing an induced abortion. A larger study is needed to determine a more accurate sensitivity for the analysis early in pregnancy.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Acta Obstetricia et Gynecologica Scandinavica |
ISSN | 0001-6349 |
DOI | |
Status | Udgivet - 2019 |