Targeted clinical metabolite profiling platform for the stratification of diabetic patients

Linda Ahonen, Sirkku Jäntti, Tommi Suvitaival, Simone Theilade, Claudia Risz, Risto Kostiainen, Peter Rossing, Matej Orešič, Tuulia Hyötyläinen*

*Corresponding author af dette arbejde
6 Citationer (Scopus)

Abstract

Several small molecule biomarkers have been reported in the literature for prediction and diagnosis of (pre)diabetes, its co-morbidities, and complications. Here, we report the development and validation of a novel, quantitative method for the determination of a selected panel of 34 metabolite biomarkers from human plasma. We selected a panel of metabolites indicative of various clinically-relevant pathogenic stages of diabetes. We combined these candidate biomarkers into a single ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLCMS/ MS) method and optimized it, prioritizing simplicity of sample preparation and time needed for analysis, enabling high-throughput analysis in clinical laboratory settings. We validated the method in terms of limits of detection (LOD) and quantitation (LOQ), linearity (R2), and intra- and inter-day repeatability of each metabolite. The method’s performance was demonstrated in the analysis of selected samples from a diabetes cohort study. Metabolite levels were associated with clinical measurements and kidney complications in type 1 diabetes (T1D) patients. Specifically, both amino acids and amino acid-related analytes, as well as specific bile acids, were associated with macro-albuminuria. Additionally, specific bile acids were associated with glycemic control, antihypertensive medication, statin medication, and clinical lipid measurements. The developed analytical method is suitable for robust determination of selected plasma metabolites in the diabetes clinic.

OriginalsprogEngelsk
Artikelnummer184
TidsskriftMetabolites
Vol/bind9
Udgave nummer9
Antal sider21
ISSN2218-1989
DOI
StatusUdgivet - 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Targeted clinical metabolite profiling platform for the stratification of diabetic patients'. Sammen danner de et unikt fingeraftryk.

Citationsformater