TY - JOUR
T1 - Systemic and Ocular Long Pentraxin 3 in Patients with Age-Related Macular Degeneration
AU - Juel, Helene Bæk
AU - Faber, Carsten
AU - Fog, Lea Munthe
AU - Bastrup-Birk, Simone
AU - Reese-Petersen, Alexander Lynge
AU - Falk, Mads Krüger
AU - Singh, Amardeep
AU - Sørensen, Torben Lykke
AU - Garred, Peter
AU - Nissen, Mogens Holst
PY - 2015/7/15
Y1 - 2015/7/15
N2 - Age-related macular degeneration (AMD) has been associated with both systemic and ocular alterations of the immune system. In particular dysfunction of complement factor H (CFH), a soluble regulator of the alternative pathway of the complement system, has been implicated in AMD pathogenesis. One of the ligands for CFH is long pentraxin 3 (PTX3), which is produced locally in the retinal pigment epithelium (RPE). To test the hypothesis that PTX3 is relevant to retinal immunohomeostasis and may be associated with AMD pathogenesis, we measured plasma PTX3 protein concentration and analyzed the RPE/choroid PTX3 gene expression in patients with AMD. To measure the ability of RPE cells to secrete PTX3 in vitro, polarized ARPE-19 cells were treated with activated T cells or cytokines (interferon (IFN)-gamma and/or tumor necrosis factor (TNF)-Alpha) from the basolateral side; then PTX3 protein concentration in supernatants and PTX3 gene expression in tissue lysates were quantified. Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307). No statistically significant difference was observed between dry and exudative AMD nor was there any correlation with hsCRP or CFH genotype. The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients. In vitro, ARPE-19 cells increased expression of the PTX3 gene as well PTX3 apical secretions after stimulation with TNF-Alpha or activated T cells (P<0.01). These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.
AB - Age-related macular degeneration (AMD) has been associated with both systemic and ocular alterations of the immune system. In particular dysfunction of complement factor H (CFH), a soluble regulator of the alternative pathway of the complement system, has been implicated in AMD pathogenesis. One of the ligands for CFH is long pentraxin 3 (PTX3), which is produced locally in the retinal pigment epithelium (RPE). To test the hypothesis that PTX3 is relevant to retinal immunohomeostasis and may be associated with AMD pathogenesis, we measured plasma PTX3 protein concentration and analyzed the RPE/choroid PTX3 gene expression in patients with AMD. To measure the ability of RPE cells to secrete PTX3 in vitro, polarized ARPE-19 cells were treated with activated T cells or cytokines (interferon (IFN)-gamma and/or tumor necrosis factor (TNF)-Alpha) from the basolateral side; then PTX3 protein concentration in supernatants and PTX3 gene expression in tissue lysates were quantified. Plasma levels of PTX3 were generally low and did not significantly differ between patients and controls (P=0.307). No statistically significant difference was observed between dry and exudative AMD nor was there any correlation with hsCRP or CFH genotype. The gene expression of PTX3 increased in RPE/choroid with age (P=0.0098 macular; P=0.003 extramacular), but did not differ between aged controls and AMD patients. In vitro, ARPE-19 cells increased expression of the PTX3 gene as well PTX3 apical secretions after stimulation with TNF-Alpha or activated T cells (P<0.01). These findings indicate that PTX3 expressed in the eye cannot be detected systemically and systemic PTX3 may have little or no impact on disease progression, but our findings do not exclude that locally produced PTX3 produced in the posterior segment of the eye may be part of the AMD immunopathogenesis.
U2 - 10.1371/journal.pone.0132800
DO - 10.1371/journal.pone.0132800
M3 - Journal article
C2 - 26176960
SN - 1932-6203
VL - 10
SP - 1
EP - 12
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 7
M1 - e0132800
ER -