Abstract
The role of sulfur in glycosidic bonds has been evaluated using quartz crystal microbalance methodology. Synthetic routes towards α1-2- and α1-6-linked dimannosides with S- or O-glycosidic bonds have been developed, and the recognition properties assessed in competition binding assays with the cognate lectin concanavalin A. Mannose-presenting QCM sensors were produced using photoinitiated, nitrene-mediated immobilization methods, and the subsequent binding study was performed in an automated flow-through instrumentation, and correlated with data from isothermal titration calorimetry. The recorded Kd-values corresponded well with reported binding affinities for the O-linked dimannosides with affinities for the α1-2-linked dimannosides in the lower micromolar range. The S-linked analogs showed slightly disparate effects, where the α1-6-linked analog showed weaker affinity than the O-linked dimannoside, as well as positive apparent cooperativity, whereas the α1-2-analog displayed very similar binding compared to the O-linked structure.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Carbohydrate Research |
Vol/bind | 452 |
Sider (fra-til) | 35-42 |
Antal sider | 8 |
ISSN | 0008-6215 |
DOI | |
Status | Udgivet - 27 nov. 2017 |
Udgivet eksternt | Ja |