Strength of the reversible, garbage-free 2k ± 1 multiplier

Eva Rotenberg, James Cranch, Michael Kirkedal Thomsen, Holger Bock Axelsen

Abstract

Recently, a reversible garbage-free 2 k ±1 constant-multiplier circuit was presented by Axelsen and Thomsen. This was the first construction of a garbage-free, reversible circuit for multiplication with non-trivial constants. At the time, the strength, that is, the range of constants obtainable by cascading these circuits, was unknown. In this paper, we show that there exist infinitely many constants we cannot multiply by using cascades of 2 k ±1-multipliers; in fact, there exist infinitely many primes we cannot multiply by. Using these results, we further provide an algorithm for determining whether one can multiply by a given constant using a cascade of 2 k ±1-multipliers, and for generating the minimal cascade of 2 k ±1-multipliers for an obtainable constant, giving a complete characterization of the problem. A table of minimal cascades for multiplying by small constants is provided for convenience.

OriginalsprogEngelsk
TitelReversible Computation : 5th International Conference, RC 2013, Victoria, BC, Canada, July 4-5, 2013. Proceedings
RedaktørerGerhard W. Dueck, D. Michael Miller
Antal sider12
ForlagSpringer
Publikationsdato2013
Sider46-57
ISBN (Trykt)978-3-642-38985-6
ISBN (Elektronisk)978-3-642-38986-3
DOI
StatusUdgivet - 2013
Begivenhed5th International Conference on Reversible Computation - Victoria, Canada
Varighed: 4 jul. 20135 jul. 2013
Konferencens nummer: 5

Konference

Konference5th International Conference on Reversible Computation
Nummer5
Land/OmrådeCanada
ByVictoria
Periode04/07/201305/07/2013
NavnLecture notes in computer science
Vol/bind7948
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Strength of the reversible, garbage-free 2k ± 1 multiplier'. Sammen danner de et unikt fingeraftryk.

Citationsformater