Abstract
A triazine-based porous carbon material (TPC-1) was prepared directly from a fluorinated aromatic nitrile in molten zinc chloride. Trimerization of the nitrile and subsequent defluorination carbonization of the polymeric network result in the formation of TPC-1. The defluorination process is reversible and can etch the polymeric network to release CFn, thereby generating additional porosity and rendering TPC-1 a nitrogen-rich porous material. TPC-1 shows a high BET surface area of 1940 m2 g-1 and contains both micropores and mesopores, which facilitate the diffusion and adsorption of gas molecules. Gas adsorption experiments demonstrate outstanding uptake capacities of TPC-1 for CO2 (4.9 mmol g-1, 273 K and 1.0 bar), CH4 (3.9 mmol g-1, 273 K and 1.0 bar), and H 2 (10.1 mmol g-1, 77 K and 1.0 bar). This straightforward synthesis procedure provides an alternative pathway to prepare high-performance porous carbon materials. This journal is
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Materials Chemistry A |
Vol/bind | 2 |
Udgave nummer | 34 |
Sider (fra-til) | 14201-14208 |
Antal sider | 8 |
ISSN | 2050-7488 |
DOI | |
Status | Udgivet - 2014 |