TY - JOUR
T1 - Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation
AU - Jensen, Ditte Marie Krohn
AU - Cun, Dongmei
AU - Maltesen, Morten Jonas
AU - Frøkjær, Sven
AU - Nielsen, Hanne Mørck
AU - Foged, Camilla
PY - 2010/2
Y1 - 2010/2
N2 - Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy.
AB - Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy.
U2 - 10.1016/jconrel.2009.10.010
DO - 10.1016/jconrel.2009.10.010
M3 - Journal article
SN - 0168-3659
VL - 142
SP - 138
EP - 145
JO - Journal of Controlled Release
JF - Journal of Controlled Release
ER -