Spontaneous supersaturation of calcium citrate from simultaneous isothermal dissolution of sodium citrate and sparingly soluble calcium hydroxycarboxylates in water

Martina Vavrusova Hedegaard, André Castilho Garcia, Bente Pia Danielsen, Leif Horsfelt Skibsted

    15 Citationer (Scopus)
    60 Downloads (Pure)

    Abstract

    Strongly supersaturated homogeneous calcium citrate solutions are formed spontaneously when solid sodium citrate and solid calcium hydroxycarboxylates are dissolved simultaneously in water or when solid sodium citrate is dissolved in an already saturated aqueous solution of the calcium hydroxycarboxylate at ambient conditions. Maximal supersaturation of calcium citrate was found to decrease for an increasing value of the stability constant for calcium binding: l-lactate < d-gluconate < citrate, indicating citrate assisted dissolution through competitive complex formation as a thermodynamic factor controlling spontaneous supersaturation for up to a factor of more than twenty. Time elapsing prior to initiation of precipitation of calcium citrate was found to be shorter for a higher degree of supersaturation and lasted between hours and days. During subsequent precipitation equilibrium solubility of calcium citrate was approached with a simultaneous increase in water activity. Both thermodynamic and kinetic factors are suggested to be important for the spontaneous supersaturation, which seems to explain the paradoxal but well-stablished high bioavailability of calcium from the sparingly soluble calcium citrate and the high mobility of calcium in the presence of citrate during biomineralization.

    OriginalsprogEngelsk
    TidsskriftRSC Advances
    Vol/bind7
    Udgave nummer6
    Sider (fra-til)3078-3088
    Antal sider11
    ISSN2046-2069
    DOI
    StatusUdgivet - 2017

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Spontaneous supersaturation of calcium citrate from simultaneous isothermal dissolution of sodium citrate and sparingly soluble calcium hydroxycarboxylates in water'. Sammen danner de et unikt fingeraftryk.

    Citationsformater