TY - JOUR
T1 - Spatial resolution of two bacterial cell division proteins
T2 - ZapA recruits ZapB to the inner face of the Z-ring
AU - Galli, Elisa
AU - Gerdes, Kenn
PY - 2010/6
Y1 - 2010/6
N2 - Summary FtsZ, the essential regulator of bacterial cell division, is a dynamic cytoskeletal protein that forms helices that condense into the Z-ring prior to division. Two small coiled-coil proteins, ZapA and ZapB, are both recruited early to the Z-ring. We show here that ZapB is recruited to the Z-ring by ZapA. A direct interaction between ZapA and ZapB is supported by bacterial two-hybrid and in vitro interaction assays. Using high-resolution 3-D reconstruction microscopy, we find that, surprisingly, ZapB is located inside the Z-ring in virtually all cells investigated. We propose a molecular model in which ZapA increases lateral interactions between FtsZ proto-filaments and ZapB mediates further stabilization of this interaction by cross-linking ZapA molecules bound to adjacent FtsZ proto-filaments. Gene deletion and complementation assays show that ZapB can mitigate cell division and Z-ring assembly defects even in the absence of ZapA, raising the possibility that ZapB stimulates Z-ring assembly by two different mechanisms.
AB - Summary FtsZ, the essential regulator of bacterial cell division, is a dynamic cytoskeletal protein that forms helices that condense into the Z-ring prior to division. Two small coiled-coil proteins, ZapA and ZapB, are both recruited early to the Z-ring. We show here that ZapB is recruited to the Z-ring by ZapA. A direct interaction between ZapA and ZapB is supported by bacterial two-hybrid and in vitro interaction assays. Using high-resolution 3-D reconstruction microscopy, we find that, surprisingly, ZapB is located inside the Z-ring in virtually all cells investigated. We propose a molecular model in which ZapA increases lateral interactions between FtsZ proto-filaments and ZapB mediates further stabilization of this interaction by cross-linking ZapA molecules bound to adjacent FtsZ proto-filaments. Gene deletion and complementation assays show that ZapB can mitigate cell division and Z-ring assembly defects even in the absence of ZapA, raising the possibility that ZapB stimulates Z-ring assembly by two different mechanisms.
U2 - 10.1111/j.1365-2958.2010.07183.x
DO - 10.1111/j.1365-2958.2010.07183.x
M3 - Journal article
C2 - 20487275
SN - 0950-382X
VL - 76
SP - 1514
EP - 1526
JO - Molecular Microbiology
JF - Molecular Microbiology
IS - 6
ER -