Abstract
For a proper subfield K of ℚ̄ we show the existence of an algebraic number α such that no power αn, n < 1, lies in K. As an application it is shown that these numbers, multiplied by convenient Gaussian numbers, can be written in the form P(T)Q(T) for some transcendental numbers T where P and Q are arbitrarily prescribed nonconstant rational functions over ℚ̄.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Algebra and its Applications |
Vol/bind | 9 |
Udgave nummer | 3 |
Sider (fra-til) | 493-500 |
Antal sider | 8 |
ISSN | 0219-4988 |
DOI | |
Status | Udgivet - jun. 2010 |