Solving the replacement paths problem for planar directed graphs in O(logn) time

Abstract

In a graph G with non-negative edge lengths, let P be a shortest path from a vertex s to a vertex t. We consider the problem of computing, for each edge e on P, the length of a shortest path in G from s to t that avoids e. This is known as the replacement paths problem. We give a linearspace algorithm with O(n log n) running time for n-vertex planar directed graphs. The previous best time bound was O(n log2 n).

OriginalsprogEngelsk
TitelProceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms
RedaktørerMoses Charikar
Antal sider10
ForlagSociety for Industrial and Applied Mathematics
Publikationsdato2010
Sider756-765
ISBN (Trykt)978-0-89871-701-3
ISBN (Elektronisk)978-1-61197-307-5
DOI
StatusUdgivet - 2010
Begivenhed21st Annual ACM-SIAM Symposium on Discrete Algorithms - Austin, USA
Varighed: 17 jan. 201019 jan. 2010
Konferencens nummer: 21

Konference

Konference21st Annual ACM-SIAM Symposium on Discrete Algorithms
Nummer21
Land/OmrådeUSA
ByAustin
Periode17/01/201019/01/2010

Fingeraftryk

Dyk ned i forskningsemnerne om 'Solving the replacement paths problem for planar directed graphs in O(logn) time'. Sammen danner de et unikt fingeraftryk.

Citationsformater