Abstract
In a graph G with non-negative edge lengths, let P be a shortest path from a vertex s to a vertex t. We consider the problem of computing, for each edge e on P, the length of a shortest path in G from s to t that avoids e. This is known as the replacement paths problem. We give a linearspace algorithm with O(n log n) running time for n-vertex planar directed graphs. The previous best time bound was O(n log2 n).
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms |
Redaktører | Moses Charikar |
Antal sider | 10 |
Forlag | Society for Industrial and Applied Mathematics |
Publikationsdato | 2010 |
Sider | 756-765 |
ISBN (Trykt) | 978-0-89871-701-3 |
ISBN (Elektronisk) | 978-1-61197-307-5 |
DOI | |
Status | Udgivet - 2010 |
Begivenhed | 21st Annual ACM-SIAM Symposium on Discrete Algorithms - Austin, USA Varighed: 17 jan. 2010 → 19 jan. 2010 Konferencens nummer: 21 |
Konference
Konference | 21st Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Nummer | 21 |
Land/Område | USA |
By | Austin |
Periode | 17/01/2010 → 19/01/2010 |