TY - JOUR
T1 - SN2016coi (ASASSN-16fp)
T2 - An Energetic H-stripped Core-collapse Supernova from a Massive Stellar Progenitor with Large Mass Loss
AU - Terreran, G.
AU - Margutti, R.
AU - Bersier, D.
AU - Brimacombe, J.
AU - Caprioli, D.
AU - Challis, P.
AU - Chornock, R.
AU - Coppejans, D. L.
AU - Dong, Subo
AU - Guidorzi, C.
AU - Hurley, K.
AU - Kirshner, R.
AU - Migliori, G.
AU - Milisavljevic, D.
AU - Palmer, D. M.
AU - Prieto, J. L.
AU - Tomasella, L.
AU - Marchant, P.
AU - Pastorello, A.
AU - Shappee, B. J.
AU - Stanek, K. Z.
AU - Stritzinger, M. D.
AU - Benetti, S.
AU - Chen, Ping
AU - Demarchi, L.
AU - Elias-Rosa, N.
AU - Gall, C.
AU - Harmanen, J.
AU - Mattila, S.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We present comprehensive observations and analysis of the energetic H-stripped SN 2016coi (a.k.a. ASASSN-16fp), spanning the γ-ray through optical and radio wavelengths, acquired within the first hours to ∼420 days post explosion. Our observational campaign confirms the identification of He in the supernova (SN) ejecta, which we interpret to be caused by a larger mixing of Ni into the outer ejecta layers. By modeling the broad bolometric light curve, we derive a large ejecta-mass-to-kinetic-energy ratio (M ej ∼ 4-7 M o, E k ∼ (7-8) × 1051 erg). The small [Ca ii] λλ7291,7324 to [O i] λλ6300,6364 ratio (∼0.2) observed in our late-time optical spectra is suggestive of a large progenitor core mass at the time of collapse. We find that SN 2016coi is a luminous source of X-rays (L X > 1039 erg s-1 in the first ∼100 days post explosion) and radio emission (L 8.5 GHz ∼ 7 × 1027 erg s-1 Hz-1 at peak). These values are in line with those of relativistic SNe (2009bb, 2012ap). However, for SN 2016coi, we infer substantial pre-explosion progenitor mass loss with a rate M ∼ (1-2) × 10-4M⊙yr-1 and a sub-relativistic shock velocity v sh ∼ 0.15c, which is in stark contrast with relativistic SNe and similar to normal SNe. Finally, we find no evidence for a SN-associated shock breakout γ-ray pulse with energy E γ > 2 × 1046 erg. While we cannot exclude the presence of a companion in a binary system, taken together, our findings are consistent with a massive single-star progenitor that experienced large mass loss in the years leading up to core collapse, but was unable to achieve complete stripping of its outer layers before explosion.
AB - We present comprehensive observations and analysis of the energetic H-stripped SN 2016coi (a.k.a. ASASSN-16fp), spanning the γ-ray through optical and radio wavelengths, acquired within the first hours to ∼420 days post explosion. Our observational campaign confirms the identification of He in the supernova (SN) ejecta, which we interpret to be caused by a larger mixing of Ni into the outer ejecta layers. By modeling the broad bolometric light curve, we derive a large ejecta-mass-to-kinetic-energy ratio (M ej ∼ 4-7 M o, E k ∼ (7-8) × 1051 erg). The small [Ca ii] λλ7291,7324 to [O i] λλ6300,6364 ratio (∼0.2) observed in our late-time optical spectra is suggestive of a large progenitor core mass at the time of collapse. We find that SN 2016coi is a luminous source of X-rays (L X > 1039 erg s-1 in the first ∼100 days post explosion) and radio emission (L 8.5 GHz ∼ 7 × 1027 erg s-1 Hz-1 at peak). These values are in line with those of relativistic SNe (2009bb, 2012ap). However, for SN 2016coi, we infer substantial pre-explosion progenitor mass loss with a rate M ∼ (1-2) × 10-4M⊙yr-1 and a sub-relativistic shock velocity v sh ∼ 0.15c, which is in stark contrast with relativistic SNe and similar to normal SNe. Finally, we find no evidence for a SN-associated shock breakout γ-ray pulse with energy E γ > 2 × 1046 erg. While we cannot exclude the presence of a companion in a binary system, taken together, our findings are consistent with a massive single-star progenitor that experienced large mass loss in the years leading up to core collapse, but was unable to achieve complete stripping of its outer layers before explosion.
KW - supernovae: individual (SN 2016coi, ASASSN-16fp)
U2 - 10.3847/1538-4357/ab3e37
DO - 10.3847/1538-4357/ab3e37
M3 - Journal article
SN - 0004-637X
VL - 883
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 147
ER -