TY - JOUR
T1 - Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations
AU - Halasa, Tariq
AU - Bøtner, Anette
AU - Mortensen, Sten
AU - Christensen, Hanne
AU - Toft, Nils
AU - Boklund, Anette
PY - 2016
Y1 - 2016
N2 - African swine fever (ASF) is a notifiable infectious disease with a considerable impact on animal health and is currently one of the most important emerging diseases of domestic pigs. ASF was introduced into Georgia in 2007 and subsequently spread to the Russian Federation and several Eastern European countries. Consequently, there is a non-negligible risk of ASF spread towards Western Europe. Therefore it is important to develop tools to improve our understanding of the spread and control of ASF for contingency planning. A stochastic and dynamic spatial spread model (DTU-DADS) was adjusted to simulate the spread of ASF virus between domestic swine herds exemplified by the Danish swine population. ASF was simulated to spread via animal movement, low- or medium-risk contacts and local spread. Each epidemic was initiated in a randomly selected herd – either in a nucleus herd, a sow herd, a randomly selected herd or in multiple herds simultaneously. A sensitivity analysis was conducted on input parameters. Given the inputs and assumptions of the model, epidemics of ASF in Denmark are predicted to be small, affecting about 14 herds in the worst-case scenario. The duration of an epidemic is predicted to vary from 1 to 76 days. Substantial economic damages are predicted, with median direct costs and export losses of €12 and €349 million, respectively, when epidemics were initiated in multiple herds. Each infectious herd resulted in 0 to 2 new infected herds varying from 0 to 5 new infected herds, depending on the index herd type.
AB - African swine fever (ASF) is a notifiable infectious disease with a considerable impact on animal health and is currently one of the most important emerging diseases of domestic pigs. ASF was introduced into Georgia in 2007 and subsequently spread to the Russian Federation and several Eastern European countries. Consequently, there is a non-negligible risk of ASF spread towards Western Europe. Therefore it is important to develop tools to improve our understanding of the spread and control of ASF for contingency planning. A stochastic and dynamic spatial spread model (DTU-DADS) was adjusted to simulate the spread of ASF virus between domestic swine herds exemplified by the Danish swine population. ASF was simulated to spread via animal movement, low- or medium-risk contacts and local spread. Each epidemic was initiated in a randomly selected herd – either in a nucleus herd, a sow herd, a randomly selected herd or in multiple herds simultaneously. A sensitivity analysis was conducted on input parameters. Given the inputs and assumptions of the model, epidemics of ASF in Denmark are predicted to be small, affecting about 14 herds in the worst-case scenario. The duration of an epidemic is predicted to vary from 1 to 76 days. Substantial economic damages are predicted, with median direct costs and export losses of €12 and €349 million, respectively, when epidemics were initiated in multiple herds. Each infectious herd resulted in 0 to 2 new infected herds varying from 0 to 5 new infected herds, depending on the index herd type.
KW - African swine fever
KW - Between herds
KW - Model
KW - Simulation
KW - Spread
U2 - 10.1016/j.vetmic.2016.08.004
DO - 10.1016/j.vetmic.2016.08.004
M3 - Journal article
C2 - 27599924
AN - SCOPUS:84981278160
SN - 0378-1135
VL - 193
SP - 7
EP - 16
JO - Veterinary Microbiology
JF - Veterinary Microbiology
ER -