Simple compactifications and polar decomposition of homogeneous real spherical spaces

Friedrich Knop, Bernhard Krötz, Eitan Sayag, Henrik Schlichtkrull

12 Citationer (Scopus)

Abstract

Let Z be an algebraic homogeneous space $$Z=G/H$$Z=G/H attached to real reductive Lie group $$G$$G. We assume that Z is real spherical, i.e., minimal parabolic subgroups have open orbits on Z. For such spaces, we investigate their large scale geometry and provide a polar decomposition. This is obtained from the existence of simple compactifications of Z which is established in this paper.

OriginalsprogEngelsk
TidsskriftSelecta Mathematica
Vol/bind21
Sider (fra-til)1071–1097
ISSN1022-1824
DOI
StatusUdgivet - 23 dec. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'Simple compactifications and polar decomposition of homogeneous real spherical spaces'. Sammen danner de et unikt fingeraftryk.

Citationsformater