SignalP 5.0 improves signal peptide predictions using deep neural networks

José Juan Almagro Armenteros, Konstantinos Tsirigos, Casper Kaae Sønderby, Thomas Nordahl Petersen, Ole Winther, Søren Brunak, Gunnar von Heijne, Henrik Nielsen

811 Citationer (Scopus)

Abstract

Signal peptides (SPs) are short amino acid sequences in the amino terminus of many newly synthesized proteins that target proteins into, or across, membranes. Bioinformatic tools can predict SPs from amino acid sequences, but most cannot distinguish between various types of signal peptides. We present a deep neural network-based approach that improves SP prediction across all domains of life and distinguishes between three types of prokaryotic SPs.

OriginalsprogEngelsk
TidsskriftNature Biotechnology
Vol/bind37
Udgave nummer4
Sider (fra-til)420-423
ISSN1087-0156
DOI
StatusUdgivet - 1 apr. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'SignalP 5.0 improves signal peptide predictions using deep neural networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater