Shortest paths in planar graphs with real lengths in O(nlog2n/loglogn) time

40 Citationer (Scopus)

Abstract

Given an n-vertex planar directed graph with real edge lengths and with no negative cycles, we show how to compute single-source shortest path distances in the graph in O(n log2 n/log log n) time with O(n) space. This improves on a recent O(n log2 n) time bound by Klein et al.

OriginalsprogEngelsk
TitelAlgorithms – ESA 2010 : 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part II
RedaktørerMark de Berg, Ulrich Meyer
Antal sider12
Vol/bindPart II
ForlagSpringer
Publikationsdato2010
Sider206-217
ISBN (Trykt)978-3-642-15780-6
ISBN (Elektronisk)978-3-642-15781-3
DOI
StatusUdgivet - 2010
Begivenhed18th Annual European Symposium on Algorithms - Liverpool, Storbritannien
Varighed: 6 sep. 20108 sep. 2010
Konferencens nummer: 18

Konference

Konference18th Annual European Symposium on Algorithms
Nummer18
Land/OmrådeStorbritannien
ByLiverpool
Periode06/09/201008/09/2010

Fingeraftryk

Dyk ned i forskningsemnerne om 'Shortest paths in planar graphs with real lengths in O(nlog2n/loglogn) time'. Sammen danner de et unikt fingeraftryk.

Citationsformater