Short-term wind energy forecasting using support vector regression

Oliver Kramer, Fabian Gieseke

36 Citationer (Scopus)

Abstract

Wind energy prediction has an important part to play in a smart energy grid for load balancing and capacity planning. In this paper we explore, if wind measurements based on the existing infrastructure of windmills in neighbored wind parks can be learned with a soft computing approach for wind energy prediction in the ten-minute to six-hour range. For this sake we employ Support Vector Regression (SVR) for time series forecasting, and run experimental analyses on real-world wind data from the NREL western wind resource dataset. In the experimental part of the paper we concentrate on loss function parameterization of SVR. We try to answer how far ahead a reliable wind forecast is possible, and how much information from the past is necessary.We demonstrate the capabilities of SVR-based wind energy forecast on the micro-scale level of one wind grid point, and on the larger scale of a whole wind park.

OriginalsprogEngelsk
TitelSoft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011
RedaktørerEmilio Corchado, Václav Snášel , Javier Sedano, Aboul Ella Hassanien, José Luis Calvo, Dominik Ślȩzak
Antal sider10
ForlagSpringer
Publikationsdato2011
Sider271-280
ISBN (Trykt)978-3-642-19643-0
ISBN (Elektronisk)978-3-642-19644-7
DOI
StatusUdgivet - 2011
Udgivet eksterntJa
Begivenhed6th International Conference on Soft Computing Models in Industrial and Environmental Applications - Salamanca, Spanien
Varighed: 6 apr. 20118 apr. 2011
Konferencens nummer: 6

Konference

Konference6th International Conference on Soft Computing Models in Industrial and Environmental Applications
Nummer6
Land/OmrådeSpanien
BySalamanca
Periode06/04/201108/04/2011
NavnAdvances in Intelligent and Soft Computing
Vol/bind87
ISSN1867-5662

Fingeraftryk

Dyk ned i forskningsemnerne om 'Short-term wind energy forecasting using support vector regression'. Sammen danner de et unikt fingeraftryk.

Citationsformater