Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations

Gerda Bortsova*, Florian Dubost, Laurens Hogeweg, Ioannis Katramados, Marleen de Bruijne

*Corresponding author af dette arbejde
13 Citationer (Scopus)

Abstract

The scarcity of labeled data often limits the application of supervised deep learning techniques for medical image segmentation. This has motivated the development of semi-supervised techniques that learn from a mixture of labeled and unlabeled images. In this paper, we propose a novel semi-supervised method that, in addition to supervised learning on labeled training images, learns to predict segmentations consistent under a given class of transformations on both labeled and unlabeled images. More specifically, in this work we explore learning equivariance to elastic deformations. We implement this through: (1) a Siamese architecture with two identical branches, each of which receives a differently transformed image, and (2) a composite loss function with a supervised segmentation loss term and an unsupervised term that encourages segmentation consistency between the predictions of the two branches. We evaluate the method on a public dataset of chest radiographs with segmentations of anatomical structures using 5-fold cross-validation. The proposed method reaches significantly higher segmentation accuracy compared to supervised learning. This is due to learning transformation consistency on both labeled and unlabeled images, with the latter contributing the most. We achieve the performance comparable to state-of-the-art chest X-ray segmentation methods while using substantially fewer labeled images.

OriginalsprogEngelsk
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
RedaktørerDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Antal sider9
ForlagSpringer VS
Publikationsdato1 jan. 2019
Sider810-818
ISBN (Trykt)9783030322250
DOI
StatusUdgivet - 1 jan. 2019
Begivenhed22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, Kina
Varighed: 13 okt. 201917 okt. 2019

Konference

Konference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Land/OmrådeKina
ByShenzhen
Periode13/10/201917/10/2019
NavnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vol/bind11769 LNCS
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations'. Sammen danner de et unikt fingeraftryk.

Citationsformater