Root carbon input in organic and inorganic fertilizer-based systems

Ngonidzashe Chirinda, Jørgen Eivind Olesen, John Roy Porter

    54 Citationer (Scopus)

    Abstract

    Background and aims
    In agroecosystems, carbon (C) inputs come from plant roots, retained shoot residues and in some cases from applied manures. Manure and shoot derived C inputs are relatively easy to determine. Conversely, high costs associated with root measurements have caused knowledge on root C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures.

    Methods
    We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable cropping systems in a long-term experiment in 2 years, 2008 and 2010. Sampled shoots and macro-roots of catch crop mixtures and cereals were characterized for dry matter (DM) biomass (C was estimated as 45 % of DM biomass). We also measured topsoil root-related soil respiration throughout the growing season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots.

    Results
    Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems. However, for winter wheat in 2008 and spring barley in 2010, there were similar amounts of root C across systems. The measurements of topsoil root-derived respiration also showed no difference across systems, despite large differences in harvested cereal yields. Cereal biomass shoot-to-root (S/R) ratio was higher (31–131 %) in inorganic than in organic fertilizer-based systems.

    Conclusions
    Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios to estimate root biomass leads to erroneous estimates of root C input.
    OriginalsprogEngelsk
    TidsskriftPlant and Soil
    Vol/bind359
    Udgave nummer1-2
    Sider (fra-til)321-333
    Antal sider13
    ISSN0032-079X
    DOI
    StatusUdgivet - okt. 2012

    Citationsformater