TY - JOUR
T1 - Role of KATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat
AU - Gozalov, Aydin
AU - Jansen-Olesen, Inger
AU - Klærke, Dan Arne
AU - Olesen, Jes
PY - 2008
Y1 - 2008
N2 - OBJECTIVE: The objective of this study was to explore the role of K(ATP) channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. BACKGROUND: Dilatation of cerebral and dural arteries causes a throbbing, migraine-like pain. Both CGRP and NO are potent vasodilators that can induce migraine. Their antagonists are effective in the treatment of migraine attacks. K(ATP) channel openers cause headache in the majority of healthy subjects suggesting a role for K(ATP) channels in migraine pathogenesis. We hypothesized that vasodilatation induced by CGRP and the NO donor glyceryltrinitrate (GTN) is mediated via K(ATP) channels. METHODS: We examined the effects of the K(ATP) channel inhibitor glibenclamide on dural and pial vasodilatation induced by CGRP, NO, and endogenously released CGRP by TES. A rat genuine closed cranial window model was used for in vivo studies and myograph baths for studying the effect in vitro. In the closed cranial window model the diameter of dural vessels was measured directly in anesthetized animals to investigate the vascular effects of infused CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood flow by Laser Doppler flowmetry (LCBF(Flux)) were measured. RESULTS: CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro. In anesthetized rats glibenclamide significantly attenuated CGRP induced dural and TES induced dural/pial artery dilatation (P = .001; P = .001; P = .005), but had no effect on dural/pial vasodilatation induced by GTN. In vitro glibenclamide failed to significantly inhibit CGRP- and GTN-induced vasodilatation. CONCLUSIONS: These results show that a K(ATP) channel blocker in vivo but not in vitro inhibits CGRP, but not GTN-induced dilatation of dural and pial arteries, a mechanism thought to be important in migraine.
AB - OBJECTIVE: The objective of this study was to explore the role of K(ATP) channels in vasodilatation induced by calcitonin gene-related peptide (CGRP), nitric oxide (NO), and transcranial electrical stimulation (TES) in intracranial arteries of rat. BACKGROUND: Dilatation of cerebral and dural arteries causes a throbbing, migraine-like pain. Both CGRP and NO are potent vasodilators that can induce migraine. Their antagonists are effective in the treatment of migraine attacks. K(ATP) channel openers cause headache in the majority of healthy subjects suggesting a role for K(ATP) channels in migraine pathogenesis. We hypothesized that vasodilatation induced by CGRP and the NO donor glyceryltrinitrate (GTN) is mediated via K(ATP) channels. METHODS: We examined the effects of the K(ATP) channel inhibitor glibenclamide on dural and pial vasodilatation induced by CGRP, NO, and endogenously released CGRP by TES. A rat genuine closed cranial window model was used for in vivo studies and myograph baths for studying the effect in vitro. In the closed cranial window model the diameter of dural vessels was measured directly in anesthetized animals to investigate the vascular effects of infused CGRP, NO, and endogenous CGRP after electrical stimulation. Also diameter changes of pial arteries, mean arterial blood pressure and local cerebral blood flow by Laser Doppler flowmetry (LCBF(Flux)) were measured. RESULTS: CGRP, NO, and TES caused dilatation of the 2 arteries in vivo and in vitro. In anesthetized rats glibenclamide significantly attenuated CGRP induced dural and TES induced dural/pial artery dilatation (P = .001; P = .001; P = .005), but had no effect on dural/pial vasodilatation induced by GTN. In vitro glibenclamide failed to significantly inhibit CGRP- and GTN-induced vasodilatation. CONCLUSIONS: These results show that a K(ATP) channel blocker in vivo but not in vitro inhibits CGRP, but not GTN-induced dilatation of dural and pial arteries, a mechanism thought to be important in migraine.
U2 - 10.1111/j.1526-4610.2008.01205.x
DO - 10.1111/j.1526-4610.2008.01205.x
M3 - Journal article
C2 - 18647185
SN - 0017-8748
VL - 48
SP - 1202
EP - 1213
JO - Headache
JF - Headache
IS - 8
ER -