Abstract
There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium.
Originalsprog | Engelsk |
---|---|
Tidsskrift | American Journal of Epidemiology |
Vol/bind | 187 |
Udgave nummer | 2 |
Sider (fra-til) | 366-377 |
Antal sider | 12 |
ISSN | 0002-9262 |
DOI | |
Status | Udgivet - 1 feb. 2018 |