Resilient Backpropagation (Rprop) for Batch-learning in TensorFlow

Ciprian Florescu, Christian Igel

    1 Citationer (Scopus)

    Abstract

    The resilient backpropagation (Rprop) algorithms are fast and accurate batch learning methods for neural networks. We describe their implementation in the popular machine learning framework TensorFlow. We present the first empirical evaluation of Rprop for training recurrent neural networks with gated recurrent units. In our experiments, Rprop with default hyperparameters outperformed vanilla steepest descent as well as the optimization algorithms RMSprop and Adam even if their hyperparameters were tuned.

    OriginalsprogEngelsk
    Publikationsdato2018
    Antal sider5
    StatusUdgivet - 2018
    BegivenhedInternational Conference on Learning Representations: Workshop - Vancouver, Canada
    Varighed: 30 apr. 20183 maj 2018
    Konferencens nummer: 6
    https://iclr.cc/

    Workshop

    WorkshopInternational Conference on Learning Representations
    Nummer6
    Land/OmrådeCanada
    ByVancouver
    Periode30/04/201803/05/2018
    Internetadresse

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Resilient Backpropagation (Rprop) for Batch-learning in TensorFlow'. Sammen danner de et unikt fingeraftryk.

    Citationsformater