TY - JOUR
T1 - Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle
AU - Scheibye-Knudsen, Morten
AU - Quistorff, Bjørn
PY - 2008
Y1 - 2008
N2 - ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type-II muscle from male Wistar rats were prepared. Respiration was measured while the medium P(i) concentration was gradually increased. The apparent K(m) values for P(i) were 607 +/- 17 microM and 405 +/- 15 microM (P < 0.0001) for type-I and type-II fibers, respectively. For isolated mitochondria the values were significantly lower than type-1 permeabilized fibers, 338 +/- 130 microM and 235 +/- 30 microM (P < 0.05), but not different with respect to fiber type. The reason for this difference in K(m) values in the permeabilized muscle is unknown, but a similar pattern has been observed for K(m) of ADP. Our data indicate that phosphate may play a role in regulation of oxygen consumption in vitro and in vivo.
AB - ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type-II muscle from male Wistar rats were prepared. Respiration was measured while the medium P(i) concentration was gradually increased. The apparent K(m) values for P(i) were 607 +/- 17 microM and 405 +/- 15 microM (P < 0.0001) for type-I and type-II fibers, respectively. For isolated mitochondria the values were significantly lower than type-1 permeabilized fibers, 338 +/- 130 microM and 235 +/- 30 microM (P < 0.05), but not different with respect to fiber type. The reason for this difference in K(m) values in the permeabilized muscle is unknown, but a similar pattern has been observed for K(m) of ADP. Our data indicate that phosphate may play a role in regulation of oxygen consumption in vitro and in vivo.
U2 - 10.1007/s00421-008-0901-9
DO - 10.1007/s00421-008-0901-9
M3 - Journal article
C2 - 18989695
SN - 8750-7587
VL - 105
SP - 279
EP - 287
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 2
ER -