Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes

Martin B Grøn, Trine Alma Knudsen, Stine H Finsen, Bente Klarlund Pedersen, Ylva Hellsten, Stefan Peter Mortensen

9 Citationer (Scopus)

Abstract

Aims/hypothesis: Plasma ATP is a potent vasodilator and is thought to play a role in the local regulation of blood flow. Type 2 diabetes is associated with reduced tissue perfusion. We aimed to examine whether individuals with type 2 diabetes have reduced plasma ATP concentrations compared with healthy control participants (case–control design). Methods: We measured femoral arterial and venous plasma ATP levels with the intravascular microdialysis technique during normoxia, hypoxia and one-legged knee-extensor exercise (10 W and 30 W) in nine participants with type 2 diabetes and eight control participants. In addition, we infused acetylcholine (ACh), sodium nitroprusside (SNP) and ATP into the femoral artery to assess vascular function and ATP signalling. Results: Individuals with type 2 diabetes had a lower leg blood flow (LBF; 2.9 ± 0.1 l/min) compared with the control participants (3.2 ± 0.1 l/min) during exercise (p < 0.05), in parallel with lower venous plasma ATP concentration (205 ± 35 vs 431 ± 72 nmol/l; p < 0.05). During systemic hypoxia, LBF increased from 0.35 ± 0.04 to 0.54 ± 0.06 l/min in control individuals, whereas it did not increase (0.25 ± 0.04 vs 0.31 ± 0.03 l/min) in the those with type 2 diabetes and was lower than in the control individuals (p < 0.05). Hypoxia increased venous plasma ATP levels in both groups (p < 0.05), but the increase was higher in control individuals (90 ± 26 nmol/l) compared to those with type 2 diabetes (18 ± 5 nmol/l). LBF and vascular conductance were lower during ATP (0.15 and 0.4 μmol min −1 [kg leg mass] −1 ) and ACh (100 μg min −1 [kg leg mass] −1 ) infusion in individuals with type 2 diabetes compared with the control participants (p < 0.05), whereas there was no difference during SNP infusion. Conclusions/interpretation: These findings demonstrate that individuals with type 2 diabetes have lower plasma ATP concentrations during exercise and hypoxia compared with control individuals, and this occurs in parallel with lower blood flow. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. These impairments in the ATP system are both likely to contribute to the reduced tissue perfusion associated with type 2 diabetes. Trial registration: ClinicalTrials.gov NCT02001766.

OriginalsprogEngelsk
TidsskriftDiabetologia
Vol/bind62
Udgave nummer3
Sider (fra-til)485-493
Antal sider9
ISSN0012-186X
DOI
StatusUdgivet - 1 mar. 2019

Emneord

  • Det Natur- og Biovidenskabelige Fakultet

Fingeraftryk

Dyk ned i forskningsemnerne om 'Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes'. Sammen danner de et unikt fingeraftryk.

Citationsformater