Rare event simulation for processes generated via stochastic fixed point equations

Jeffrey F. Collamore, Guoqing Diao, Anand N. Vidyashankar

6 Citationer (Scopus)
822 Downloads (Pure)

Abstract

In a number of applications, particularly in financial and actuarial mathematics, it is of interest to characterize the tail distribution of a random variable V satisfying the distributional equation V D= f (V), where f (v) = Amax{v,D}+B for (A,B,D) (0,∞)×ℝ 2. This paper is concerned with computational methods for evaluating these tail probabilities. We introduce a novel importance sampling algorithm, involving an exponential shift over a random time interval, for estimating these rare event probabilities. We prove that the proposed estimator is: (i) consistent, (ii) strongly efficient and (iii) optimal within a wide class of dynamic importance sampling estimators. Moreover, using extensions of ideas from nonlinear renewal theory, we provide a precise description of the running time of the algorithm. To establish these results, we develop new techniques concerning the convergence of moments of stopped perpetuity sequences, and the first entrance and last exit times of associated Markov chains on R. We illustrate our methods with a variety of numerical examples which demonstrate the ease and scope of the implementation.

OriginalsprogEngelsk
TidsskriftAnnals of Applied Probability
Vol/bind24
Udgave nummer5
Sider (fra-til)2143-2175
Antal sider33
ISSN1050-5164
DOI
StatusUdgivet - okt. 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Rare event simulation for processes generated via stochastic fixed point equations'. Sammen danner de et unikt fingeraftryk.

Citationsformater