TY - JOUR
T1 - Rapid detection of microRNA by a silver nanocluster DNA probe
AU - Yang, Seong Wook
AU - Vosch, Tom
PY - 2011/9/15
Y1 - 2011/9/15
N2 - MicroRNAs (miRNAs) are regulatory small RNAs that have important roles in numerous developmental, metabolic, and disease processes of plants and animals. The individual levels of miRNAs can be useful biomarkers for cellular events or disease diagnosis. Thus, innovative new tools for rapid, specific, and sensitive detection of miRNAs are an important field of research. Using the fluorescence properties of DNA-nanosilver clusters (DNA/AgNC), we have designed a DNA/AgNC probe that can detect the presence of target miRNA. Here, we show that the red fluorescence of the DNA/AgNC probe is diminished upon the presence of target miRNA without pre- or postmodification, addition of extra enhancer molecules, and labeling. The DNA/AgNC probe emission was lowest when the complementary miRNA target was present and was significantly higher for four other control miRNA sequences. Also, when adding whole plant endogenous RNA to the DNA/AgNC probe, the emission was significantly higher for the mutant where miRNA was deficient. On the basis of these findings, we suggest that these DNA/AgNC probes could be developed into a new, simple, inexpensive, and instant technique for miRNAs detection.
AB - MicroRNAs (miRNAs) are regulatory small RNAs that have important roles in numerous developmental, metabolic, and disease processes of plants and animals. The individual levels of miRNAs can be useful biomarkers for cellular events or disease diagnosis. Thus, innovative new tools for rapid, specific, and sensitive detection of miRNAs are an important field of research. Using the fluorescence properties of DNA-nanosilver clusters (DNA/AgNC), we have designed a DNA/AgNC probe that can detect the presence of target miRNA. Here, we show that the red fluorescence of the DNA/AgNC probe is diminished upon the presence of target miRNA without pre- or postmodification, addition of extra enhancer molecules, and labeling. The DNA/AgNC probe emission was lowest when the complementary miRNA target was present and was significantly higher for four other control miRNA sequences. Also, when adding whole plant endogenous RNA to the DNA/AgNC probe, the emission was significantly higher for the mutant where miRNA was deficient. On the basis of these findings, we suggest that these DNA/AgNC probes could be developed into a new, simple, inexpensive, and instant technique for miRNAs detection.
U2 - 10.1021/ac201903n
DO - 10.1021/ac201903n
M3 - Journal article
C2 - 21859161
SN - 0003-2700
VL - 83
SP - 6935
EP - 6939
JO - Industrial And Engineering Chemistry Analytical Edition
JF - Industrial And Engineering Chemistry Analytical Edition
IS - 18
ER -