Abstract
In a geometric k-clustering problem the goal is to partition a set of points in Rd into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S: given a query box Q and an integer k ≧ 2, compute an optimal k-clustering for S P ∩ Q. We obtain the following results. • We present a general method to compute a (1 + ϵ)-approximation to a range-clustering query, where ϵ > 0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k-center clustering in any Lp-metric and a variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. • We extend our method to deal with capacitated k-clustering problems, where each of the clusters should not contain more than a given number of points. • For the special cases of rectilinear k-center clustering in ℝ1 in ℝ2 for k = 2 or 3, we present data structures that answer range-clustering queries exactly.
Originalsprog | Engelsk |
---|---|
Titel | 33rd International Symposium on Computational Geometry (SoCG 2017) |
Redaktører | Boris Aronov, Matthew J. Katz |
Antal sider | 16 |
Forlag | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Publikationsdato | 2017 |
Artikelnummer | 5 |
ISBN (Elektronisk) | 978-3-95977-038-5 |
DOI | |
Status | Udgivet - 2017 |
Begivenhed | 33rd International Symposium on Computational Geometry - Brisbane, Australien Varighed: 4 jul. 2017 → 7 jul. 2017 Konferencens nummer: 33 |
Konference
Konference | 33rd International Symposium on Computational Geometry |
---|---|
Nummer | 33 |
Land/Område | Australien |
By | Brisbane |
Periode | 04/07/2017 → 07/07/2017 |
Navn | Leibniz International Proceedings in Informatics |
---|---|
Vol/bind | 77 |
ISSN | 1868-8969 |