TY - JOUR
T1 - Quantifying the global cellular thiol-disulfide status
AU - Hansen, Rosa E
AU - Roth, Doris
AU - Winther, Jakob R
N1 - Keywords:
cysteine glutathione protein
PY - 2009
Y1 - 2009
N2 - It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data were combined with quantification of reduced and oxidized glutathione in the same cells. Of the total protein cysteines, 6% and 9.6% are engaged in disulfide bond formation in HEK and HeLa cells, respectively. Furthermore, the steady-state level of PSSG is <0.1% of the total protein cysteines in both cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active redox pool than glutathione. Accordingly, protein thiols are likely to be directly involved in the cellular defense against oxidative stress.
AB - It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data were combined with quantification of reduced and oxidized glutathione in the same cells. Of the total protein cysteines, 6% and 9.6% are engaged in disulfide bond formation in HEK and HeLa cells, respectively. Furthermore, the steady-state level of PSSG is <0.1% of the total protein cysteines in both cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active redox pool than glutathione. Accordingly, protein thiols are likely to be directly involved in the cellular defense against oxidative stress.
U2 - 10.1073/pnas.0812149106
DO - 10.1073/pnas.0812149106
M3 - Journal article
C2 - 19122143
SN - 0027-8424
VL - 106
SP - 422
EP - 427
JO - Proceedings of the National Academy of Science of the United States of America
JF - Proceedings of the National Academy of Science of the United States of America
IS - 2
ER -