Properties of derivations on some convolution algebras

Abstract

For all convolution algebras L1[0; 1); L1 loc and A(!) = T n L1(!n), the derivations are of the form Dμf = Xf μ for suitable measures μ, where (Xf)(t) = tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ. Moreover, for all these algebras we show
that the extension of Dμ to a natural dual space is weak-star continuous.
OriginalsprogEngelsk
TidsskriftCentral European Journal of Mathematics
Vol/bind12
Udgave nummer5
Sider (fra-til)742-751
ISSN1895-1074
DOI
StatusUdgivet - maj 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Properties of derivations on some convolution algebras'. Sammen danner de et unikt fingeraftryk.

Citationsformater