Projective measure without projective Baire

David Schrittesser, Sy David Friedman

Abstract

We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
OriginalsprogEngelsk
ForlagAmerican Mathematical Society
Antal sider141
StatusAccepteret/In press - 2020
NavnMemoirs of the American Mathematical Society
ISSN0065-9266

Fingeraftryk

Dyk ned i forskningsemnerne om 'Projective measure without projective Baire'. Sammen danner de et unikt fingeraftryk.

Citationsformater