TY - JOUR
T1 - Programmed cell death by hok/sok of plasmid R1: Processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding
AU - Gultyaev, AP
AU - Franch, T
AU - Gerdes, K
PY - 1997
Y1 - 1997
N2 - The hok/sok locus of plasmid R1 mediates plasmid stabilization by killing of plasmid-free cells. The locus specifies two RNAs, hok mRNA and Sok antisense RNA. The post-segregational killing mediated by hok/sok is governed by a complicated control mechanism that involves both post-transcriptional inhibition of translation by Sok-RNA and activation of hok translation by mRNA 3' processing. Sok-RNA inhibits translation of a reading frame (mok) that overlaps with hok, and translation of hok is coupled to translation of mok. In the inactive full-length hok mRNA, the translational activator element at the mRNA 5'-end (tac) is sequestered by the fold-back-inhibitory element located at the mRNA 3'-end (fbi). The 5' to 3' pairing locks the RNA in an inert configuration in which the SDmok and Sok-RNA target regions are sequestered. Here we show that the 3' processing leads to major structural rearrangements in the mRNA 5'-end. The structure of the refolded RNA explains activation of translation and antisense RNA binding. The refolded RNA contains an antisense RNA target stem-loop that presents the target nucleotides in a single-stranded conformation. The stem of the target hairpin contains SDmok and AUG(mok) in a paired configuration. Using toeprinting analysis, we show that this pairing keeps SDmok in an accessible configuration. Furthermore, a mutational analysis shows that an internal loop in the target stem is prerequisite for efficient translation and antisense RNA binding. (C) 1997 Academic Press Limited.
AB - The hok/sok locus of plasmid R1 mediates plasmid stabilization by killing of plasmid-free cells. The locus specifies two RNAs, hok mRNA and Sok antisense RNA. The post-segregational killing mediated by hok/sok is governed by a complicated control mechanism that involves both post-transcriptional inhibition of translation by Sok-RNA and activation of hok translation by mRNA 3' processing. Sok-RNA inhibits translation of a reading frame (mok) that overlaps with hok, and translation of hok is coupled to translation of mok. In the inactive full-length hok mRNA, the translational activator element at the mRNA 5'-end (tac) is sequestered by the fold-back-inhibitory element located at the mRNA 3'-end (fbi). The 5' to 3' pairing locks the RNA in an inert configuration in which the SDmok and Sok-RNA target regions are sequestered. Here we show that the 3' processing leads to major structural rearrangements in the mRNA 5'-end. The structure of the refolded RNA explains activation of translation and antisense RNA binding. The refolded RNA contains an antisense RNA target stem-loop that presents the target nucleotides in a single-stranded conformation. The stem of the target hairpin contains SDmok and AUG(mok) in a paired configuration. Using toeprinting analysis, we show that this pairing keeps SDmok in an accessible configuration. Furthermore, a mutational analysis shows that an internal loop in the target stem is prerequisite for efficient translation and antisense RNA binding. (C) 1997 Academic Press Limited.
U2 - 10.1006/jmbi.1997.1294
DO - 10.1006/jmbi.1997.1294
M3 - Journal article
C2 - 9367744
SN - 0022-2836
VL - 273
SP - 26
EP - 37
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 1
ER -