Preferences-based choice prediction in evolutionary multi-objective optimization

Manish Aggarwal, Justin Heinermann, Stefan Oehmcke, Oliver Kramer*

*Corresponding author af dette arbejde
    2 Citationer (Scopus)

    Abstract

    Evolutionary multi-objective algorithms (EMOAs) of the type of NSGA-2 approximate the Pareto-front, after which a decisionmaker (DM) is confounded with the primary task of selecting the best solution amongst all the equally good solutions on the Pareto-front. In this paper, we complement the popular NSGA-2 EMOA by posteriori identifying a DM’s best solution among the candidate solutions on the Pareto-front, generated through NSGA-2. To this end, we employ a preference-based learning approach to learn an abstract ideal reference point of the DM on the multi-objective space, which reflects the compromises the DM makes against a set of conflicting objectives. The solution that is closest to this reference-point is then predicted as the DM’s best solution. The pairwise comparisons of the candidate solutions provides the training information for our learning model. The experimental results on ZDT1 dataset shows that the proposed approach is not only intuitive, but also easy to apply, and robust to inconsistencies in the DM’s preference statements.

    OriginalsprogEngelsk
    TitelApplications of Evolutionary Computation - 20th European Conference, EvoApplications 2017, Proceedings
    RedaktørerJ.Ignacio Hidalgo, Carlos Cotta, Ting Hu, Alberto Tonda, Paolo Burrelli, Matt Coler, Giovanni Iacca, Michael Kampouridis, Antonio M. Mora Garcia, Giovanni Squillero, Anthony Brabazon, Evert Haasdijk, Jacqueline Heinerman, Fabio D Andreagiovanni, Jaume Bacardit, Trung Thanh Nguyen, Sara Silva, Ernesto Tarantino, Anna I. Esparcia-Alcazar, Gerd Ascheid, Kyrre Glette, Stefano Cagnoni, Paul Kaufmann, Francisco Fernandez de Vega, Michalis Mavrovouniotis, Mengjie Zhang, Federico Divina, Kevin Sim, Neil Urquhart, Robert Schaefer
    Antal sider10
    ForlagSpringer Verlag,
    Publikationsdato1 jan. 2017
    Sider715-724
    ISBN (Trykt)9783319558486
    DOI
    StatusUdgivet - 1 jan. 2017
    Begivenhed20th European Conference on the Applications of Evolutionary Computation, EvoApplications 2017 - Amsterdam, Holland
    Varighed: 19 apr. 201721 apr. 2017

    Konference

    Konference20th European Conference on the Applications of Evolutionary Computation, EvoApplications 2017
    Land/OmrådeHolland
    By Amsterdam
    Periode19/04/201721/04/2017
    NavnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Vol/bind10199 LNCS
    ISSN0302-9743

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Preferences-based choice prediction in evolutionary multi-objective optimization'. Sammen danner de et unikt fingeraftryk.

    Citationsformater