Predicting Electrical Storm Using Episodes’ Parameters from ICD Recorded Data*

Saeed Shakibfar, Mohammadreza Yazdchi, Susan Aliakbaryhosseinabadi

Abstract

Electrical storm (ES) is a life-threatening heart condition for patients with implantable cardioverter defibrillators (ICDs). ICD patients experienced episodes are at higher risk for ES. However, predicting ES using previous episodes' parameters recorded by ICDs have never been developed. This study aims to predict ES using machine learning models based on ICD remote monitoring-summaries during episodes in the anonymized large number of patients.Episode ICD-summaries from 16,022 patients were used to construct and evaluate two models, logistic regression and random forest, for predicting the short-term risk of ES.Episode parameters in this study included the total number of sustained episodes, shocks delivered and the cycle length parameters. The models evaluated on the data sections not used for model development.Random forest performed significantly better than logistic regression (P < 0.01), achieving a test accuracy of 0.99 and an Area Under an ROC Curve (AUC) of 0.93 (vs. an accuracy of 0.98 and an AUC of 0.90). The total number of previous sustained episodes was the most relevant variables in the both models.

OriginalsprogEngelsk
Titel 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
ForlagIEEE
Publikationsdatojul. 2019
Sider4885-4888
ISBN (Trykt)978-1-5386-1312-2
ISBN (Elektronisk)978-1-5386-1311-5
DOI
StatusUdgivet - jul. 2019
Begivenhed41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Berlin, Tyskland
Varighed: 23 jul. 201927 jul. 2019

Konference

Konference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Land/OmrådeTyskland
ByBerlin
Periode23/07/201927/07/2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Predicting Electrical Storm Using Episodes’ Parameters from ICD Recorded Data*'. Sammen danner de et unikt fingeraftryk.

Citationsformater