Preclusion of switch behavior in networks with mass-action kinetics

Elisenda Feliu*, Carsten Wiuf

*Corresponding author af dette arbejde
26 Citationer (Scopus)

Abstract

We study networks taken with mass-action kinetics and provide a Jacobian criterion that applies to an arbitrary network to preclude the existence of multiple positive steady states within any stoichiometric class for any choice of rate constants. We are concerned with the characterization of injective networks, that is, networks for which the species formation rate function is injective in the interior of the positive orthant within each stoichiometric class. We show that a network is injective if and only if the determinant of the Jacobian of a certain function does not vanish. The function consists of components of the species formation rate function and a maximal set of independent conservation laws. The determinant of the function is a polynomial in the species concentrations and the rate constants (linear in the latter) and its coefficients are fully determined. The criterion also precludes the existence of degenerate steady states. Further, we relate injectivity of a network to that of the network obtained by adding outflow, or degradation, reactions for all species.

OriginalsprogEngelsk
TidsskriftApplied Mathematics and Computation
Vol/bind219
Udgave nummer4
Sider (fra-til)1449-1467
Antal sider19
ISSN0096-3003
DOI
StatusUdgivet - 1 nov. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Preclusion of switch behavior in networks with mass-action kinetics'. Sammen danner de et unikt fingeraftryk.

Citationsformater