TY - JOUR
T1 - Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS
AU - Creech, John Benjamin
AU - Baker, J. A.
AU - Handler, M. R.
AU - Bizzarro, Martin
PY - 2014/1/10
Y1 - 2014/1/10
N2 - We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a 196Pt-198Pt double-spike to correct for instrumental mass bias. Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily dissolved in acid in preparation for anion-exchange chemistry. Pt was recovered from anion-exchange resin in concentrated HNO3 acid after elution of matrix elements, including the other platinum group elements (PGE), in dilute HCl and HNO3 acids. The separation method has been calibrated using a precious metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one sample from the Cretaceous-Paleogene boundary layer. Pt concentrations in these samples range from ca. 5ngg-1 to 4μgg-1. This analytical method has been shown to have an external reproducibility on δ198Pt (permil difference in the 198Pt/194Pt ratio from the IRMM-010 standard) of ±0.040 (2sd) on Pt solution standards (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2sd). Pt stable isotope data for the full set of reference materials have a range of δ198Pt values with offsets of up to 0.4‰ from the IRMM-010 standard, which are readily resolved with this technique. These results demonstrate the potential of the Pt isotope system as a tracer in geochemical systems.
AB - We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a 196Pt-198Pt double-spike to correct for instrumental mass bias. Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily dissolved in acid in preparation for anion-exchange chemistry. Pt was recovered from anion-exchange resin in concentrated HNO3 acid after elution of matrix elements, including the other platinum group elements (PGE), in dilute HCl and HNO3 acids. The separation method has been calibrated using a precious metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one sample from the Cretaceous-Paleogene boundary layer. Pt concentrations in these samples range from ca. 5ngg-1 to 4μgg-1. This analytical method has been shown to have an external reproducibility on δ198Pt (permil difference in the 198Pt/194Pt ratio from the IRMM-010 standard) of ±0.040 (2sd) on Pt solution standards (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2sd). Pt stable isotope data for the full set of reference materials have a range of δ198Pt values with offsets of up to 0.4‰ from the IRMM-010 standard, which are readily resolved with this technique. These results demonstrate the potential of the Pt isotope system as a tracer in geochemical systems.
U2 - 10.1016/j.chemgeo.2013.11.009
DO - 10.1016/j.chemgeo.2013.11.009
M3 - Journal article
C2 - 25684781
AN - SCOPUS:84889683692
SN - 0009-2541
VL - 363
SP - 293
EP - 300
JO - Chemical Geology
JF - Chemical Geology
ER -