PHAISTOS: a framework for Markov chain Monte Carlo simulation and inference of protein structure

Wouter Krogh Boomsma, Jes Frellsen, Tim Philipp Harder, Sandro Bottaro, Kristoffer Enøe Johansson, Pengfei Tian, Kasper Stovgaard, Christian Andreetta, Simon Olsson, Jan Valentin, Lubomir Dimitrov Antonov, Anders Steen Christensen, Mikael Borg, Jan Halborg Jensen, Kresten Lindorff-Larsen, Jesper Ferkinghoff-Borg, Thomas Wim Hamelryck

31 Citationer (Scopus)

Abstract

We present a new software framework for Markov chain Monte Carlo sampling for simulation, prediction, and inference of protein structure. The software package contains implementations of recent advances in Monte Carlo methodology, such as efficient local updates and sampling from probabilistic models of local protein structure. These models form a probabilistic alternative to the widely used fragment and rotamer libraries. Combined with an easily extendible software architecture, this makes PHAISTOS well suited for Bayesian inference of protein structure from sequence and/or experimental data. Currently, two force-fields are available within the framework: PROFASI and OPLS-AA/L, the latter including the generalized Born surface area solvent model. A flexible command-line and configuration-file interface allows users quickly to set up simulations with the desired configuration. PHAISTOS is released under the GNU General Public License v3.0. Source code and documentation are freely available from http://phaistos.sourceforge.net. The software is implemented in C++ and has been tested on Linux and OSX platforms.

OriginalsprogEngelsk
TidsskriftJournal of Computational Chemistry
Vol/bind34
Udgave nummer19
Sider (fra-til)1697-1705
Antal sider9
ISSN0192-8651
DOI
StatusUdgivet - 15 jul. 2013

Emneord

  • Biokemi

Fingeraftryk

Dyk ned i forskningsemnerne om 'PHAISTOS: a framework for Markov chain Monte Carlo simulation and inference of protein structure'. Sammen danner de et unikt fingeraftryk.

Citationsformater