Parsing Universal Dependencies without training

Hector Martinez Alonso, Zeljko Agic, Barbara Plank, Anders Søgaard

7 Citationer (Scopus)

Abstract

We propose UDP, the first training-free parser for Universal Dependencies (UD). Our algorithm is based on PageRank and a small set of head attachment rules. It features two-step decoding to guarantee that function words are attached as leaf nodes. The parser requires no training, and it is competitive with a delexicalized transfer system. UDP offers a linguistically sound unsupervised alternative to cross-lingual parsing for UD, which can be used as a baseline for such systems. The parser has very few parameters and is distinctly robust to domain change across languages.

OriginalsprogEngelsk
TitelProceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics : long papers
Antal sider11
Vol/bind1
ForlagAssociation for Computational Linguistics
Publikationsdato2017
Sider230-240
ISBN (Elektronisk) 978-1-945626-34-0
StatusUdgivet - 2017
Begivenhed15th Conference of the European Chapter of the Association for Computational Linguistics - Valencia, Spanien
Varighed: 3 apr. 20177 apr. 2017
Konferencens nummer: 15

Konference

Konference15th Conference of the European Chapter of the Association for Computational Linguistics
Nummer15
Land/OmrådeSpanien
ByValencia
Periode03/04/201707/04/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Parsing Universal Dependencies without training'. Sammen danner de et unikt fingeraftryk.

Citationsformater