Parity lifetime of bound states in a proximitized semiconductor nanowire

Andrew Patrick Higginbotham, Sven Marian Albrecht, Gediminas Kirsanskas, Willy Chang, Ferdinand Kuemmeth, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karsten Flensberg, Charles M. Marcus

113 Citationer (Scopus)
2498 Downloads (Pure)

Abstract

Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.

OriginalsprogEngelsk
TidsskriftNature Physics
Vol/bind11
Udgave nummer12
Sider (fra-til)1017-1021
Antal sider5
ISSN1745-2473
DOI
StatusUdgivet - 1 dec. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'Parity lifetime of bound states in a proximitized semiconductor nanowire'. Sammen danner de et unikt fingeraftryk.

Citationsformater