TY - JOUR
T1 - Paleo-redox boundaries in fractured granite
AU - Dideriksen, Knud
AU - Christiansen, Bo C.
AU - Frandsen, Cathrine
AU - Balic Zunic, Tonci
AU - Steen, Mørup
AU - Stipp, Susan Louise Svane
PY - 2010/5
Y1 - 2010/5
N2 - At the Earth's surface, Fe(II) often oxidises and forms insoluble Fe(III)-(oxyhydr)oxides, whose particle size and structure depend on solution composition and temperature during formation and afterwards. Bacterial processes and exposure to reducing environments reduces them again, releasing dissolved iron to the groundwater. During such cycling, the Fe isotopes fractionate to an extent that is expected to depend on temperature. In this study, we report on the use of Fe-oxides as paleo-redox indicators, using their structure, morphology and Fe-composition as a clue for formation conditions. In samples taken from ∼120m drill cores in granite from SE Sweden, X-ray amorphous, superparamagnetic, nanometre-sized Fe-oxides are confined to fractures of the upper ∼50m, whereas well-crystalline Fe-oxides, with particle sizes typical for soils, occur down to ∼110m. We also identified hematite with a particle size of 100nm, similar to hematite of hydrothermal origin. The Fe isotope composition of the fine-grained Fe-oxides (-1‰<δ56Fe<1‰, IRMM-14 referenced) scatter significantly compared to the distribution previously observed for hydrothermal material (-0.26‰<δ56Fe<0.12‰) and they are dominantly heavier than Fe-bearing silicates from fractures (-0.56‰<δ56Fe<-0.35‰). This is consistent with formation by low-temperature weathering, where Fe-silicates dissolve, Fe(II) oxidises and Fe(III)-oxides precipitate. The X-ray amorphous, nanometre-sized nature of near-surface Fe-oxides suggests recent formation. The deeper situated, well-crystalline Fe-oxides are more mature and we interpret that they record earlier oxidising events. They exist in fractures that are not significantly altered, indicating formation during periods of oxidation. Our results show that oxygenated water may reach depths of ∼110m in fractured granite. The absence of natural, low-temperature Fe-oxides from deeper drill cores suggests that oxygenated waters do not readily penetrate beyond about 100m and suggests that radioactive waste repositories located at a depth of ∼500m should be well-protected from oxygenated waters.
AB - At the Earth's surface, Fe(II) often oxidises and forms insoluble Fe(III)-(oxyhydr)oxides, whose particle size and structure depend on solution composition and temperature during formation and afterwards. Bacterial processes and exposure to reducing environments reduces them again, releasing dissolved iron to the groundwater. During such cycling, the Fe isotopes fractionate to an extent that is expected to depend on temperature. In this study, we report on the use of Fe-oxides as paleo-redox indicators, using their structure, morphology and Fe-composition as a clue for formation conditions. In samples taken from ∼120m drill cores in granite from SE Sweden, X-ray amorphous, superparamagnetic, nanometre-sized Fe-oxides are confined to fractures of the upper ∼50m, whereas well-crystalline Fe-oxides, with particle sizes typical for soils, occur down to ∼110m. We also identified hematite with a particle size of 100nm, similar to hematite of hydrothermal origin. The Fe isotope composition of the fine-grained Fe-oxides (-1‰<δ56Fe<1‰, IRMM-14 referenced) scatter significantly compared to the distribution previously observed for hydrothermal material (-0.26‰<δ56Fe<0.12‰) and they are dominantly heavier than Fe-bearing silicates from fractures (-0.56‰<δ56Fe<-0.35‰). This is consistent with formation by low-temperature weathering, where Fe-silicates dissolve, Fe(II) oxidises and Fe(III)-oxides precipitate. The X-ray amorphous, nanometre-sized nature of near-surface Fe-oxides suggests recent formation. The deeper situated, well-crystalline Fe-oxides are more mature and we interpret that they record earlier oxidising events. They exist in fractures that are not significantly altered, indicating formation during periods of oxidation. Our results show that oxygenated water may reach depths of ∼110m in fractured granite. The absence of natural, low-temperature Fe-oxides from deeper drill cores suggests that oxygenated waters do not readily penetrate beyond about 100m and suggests that radioactive waste repositories located at a depth of ∼500m should be well-protected from oxygenated waters.
M3 - Journal article
SN - 0016-7037
VL - 74
SP - 2866
EP - 2880
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -