Abstract
Low-abundance regulatory peptides, including metabolically important gut hormones, have shown promising therapeutic potential. Here, we present a streamlined mass spectrometry-based platform for identifying and characterizing low-abundance regulatory peptides in humans. We demonstrate the clinical applicability of this platform by studying a hitherto neglected glucose- and appetite-regulating gut hormone, namely, oxyntomodulin. Our results show that the secretion of oxyntomodulin in patients with type 2 diabetes is significantly impaired, and that its level is increased by more than 10-fold after gastric bypass surgery. Furthermore, we report that oxyntomodulin is co-distributed and co-secreted with the insulin-stimulating and appetite-regulating gut hormone glucagon-like peptide-1 (GLP-1), is inactivated by the same protease (dipeptidyl peptidase-4) as GLP-1 and acts through its receptor. Thus, oxyntomodulin may participate with GLP-1 in the regulation of glucose metabolism and appetite in humans. In conclusion, this mass spectrometry-based platform is a powerful resource for identifying and characterizing metabolically active low-abundance peptides.
Originalsprog | Engelsk |
---|---|
Tidsskrift | EBioMedicine |
Vol/bind | 7 |
Sider (fra-til) | 112-120 |
Antal sider | 9 |
ISSN | 2352-3964 |
DOI | |
Status | Udgivet - 1 maj 2016 |