TY - JOUR
T1 - Opportunities to encourage mobilization of sustainable bioenergy supply chains
AU - Smith, C. Tattersall
AU - Lattimore, Brenna
AU - Berndes, Göran
AU - Bentsen, Niclas Scott
AU - Dimitriou, Ioannis
AU - Langeveld, Hans
AU - Thiffault, Evelyne
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Significant opportunities exist to reduce greenhouse gas emissions, increase domestic energy security, boost rural economies, and improve local environmental conditions through the deployment of sustainable bioenergy and bio-based product supply chains. There is currently a wide selection of possible feedstocks, a variety of conversion routes, and a number of different end products that can be produced at a range of scales. However, economic slowdown, low oil prices, lack of global political will, and lingering questions regarding land use change and the sustainability of bioenergy production systems provide a challenging global context to speed the pace of investment. The opinions expressed in this paper are derived from our collaboration within IEA Bioenergy to determine opportunities as well as barriers that need to be overcome to realize opportunities on a wider scale. This comprehensive and novel collaborative effort confirmed that feedstocks produced using logistically efficient production systems can be mobilized to make significant contributions to achieving global targets for bioenergy. At the same time, significant barriers to large-scale implementation exist in many regions. The mobilization potential identified in the study will depend on both increases in supply chain efficiencies and profits and strong policy support to increase stakeholder and investor confidence. WIREs Energy Environ 2017, 6:e237. doi: 10.1002/wene.237. For further resources related to this article, please visit the WIREs website.
AB - Significant opportunities exist to reduce greenhouse gas emissions, increase domestic energy security, boost rural economies, and improve local environmental conditions through the deployment of sustainable bioenergy and bio-based product supply chains. There is currently a wide selection of possible feedstocks, a variety of conversion routes, and a number of different end products that can be produced at a range of scales. However, economic slowdown, low oil prices, lack of global political will, and lingering questions regarding land use change and the sustainability of bioenergy production systems provide a challenging global context to speed the pace of investment. The opinions expressed in this paper are derived from our collaboration within IEA Bioenergy to determine opportunities as well as barriers that need to be overcome to realize opportunities on a wider scale. This comprehensive and novel collaborative effort confirmed that feedstocks produced using logistically efficient production systems can be mobilized to make significant contributions to achieving global targets for bioenergy. At the same time, significant barriers to large-scale implementation exist in many regions. The mobilization potential identified in the study will depend on both increases in supply chain efficiencies and profits and strong policy support to increase stakeholder and investor confidence. WIREs Energy Environ 2017, 6:e237. doi: 10.1002/wene.237. For further resources related to this article, please visit the WIREs website.
U2 - 10.1002/wene.237
DO - 10.1002/wene.237
M3 - Journal article
SN - 2041-8396
VL - 6
JO - Wiley Interdisciplinary Reviews: Energy and Environment
JF - Wiley Interdisciplinary Reviews: Energy and Environment
IS - 3
M1 - e237
ER -